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Computer solutions to the problem of vibrational 
relaxation in hypersonic nozzle flows 

By J.  L. STOLLERY AND C. PARK 
Department of Aeronautics, Imperial College, University of London 

(Received 12 April 1963 and in revised form 21 October 1963) 

This report is an extension of an earlier note in which a simple method of esti- 
mating the distribution of vibrational temperature along a hypersonic nozzle 
was described. Results were presented for hyperbolic, axisymmetric nozzles 
with reservoir conditions 1000 < po < 4000p.s.i.a., 1000 < To 6 3000 OK. The 
problem was subsequently programmed for the Ferranti Mercury computer at the 
University of London computing centre, and the results of these computations 
are given here. The vibrational temperatures are compared with those of the 
previous simple method. The distributions of pressure and temperature through 
the nozzle are also given and a simple method of estimating the vibrational 
temperature is described. 

1. Introduction 
In  a previous note, Stollery & Smith (1962) have discussed the thermodynamic 

aspects of equilibrium and non-equilibrium vibrating gas flows. The vibrational 
rate equation wasintegratednumerically, the perfect-gas values being assumed for 
pressure and temperature, to find the variation of vibrational temperature along 
the nozzle. A simple criterion for the freezing point was found to agree well with 
the numerical solutions. 

In  a subsequent paper by Stollery & Park (1963) the vibrational rate equation 
was integrated exactly along with the one-dimensional inviscid flow equations 
for nozzle flow to find the variation of both temperature and pressure using a 
digital computer. The present note is a condensed version of that paper. 

2. Formulation of the problem 
Fundamental equations 

The appropriate quasi one-dimensional flow equations of mass, momentum and 
energy are pAv = const. = m, (1) 

-pv(dv/dx) = dp/dx,  (2) 

(3) Cp, T, + (T + +v2 = const. = Cp, T a ,  + a,. 
The notation used is standard; (T is the energy stored in vibration and 5 indicates 
the equilibrium value. Suffix a indicates the active degrees of freedom (i.e. 
translation and rotation here) , whilst suffix 0 denotes reservoir conditions. The 
equation of state is P = pRTa,  (4) 
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and the linear form of the rate equation is used, thus 

da/dx = L-l(i7- a). ( 5 )  

The relaxation length L is equal to 07, where 7 is the vibrational relaxation time. 
In  order to programme the problem, analytic expressions are required for 
B and 7. Those used for air, namely 

a = {5974/[exp( 3076/T,) - 11) cal/mole, 

rp = 1.402 x 104exp ( - Tu/401.1) atmpsec, 

(6) 

(71 

where Ti is the vibrational temperature in OK, and 

agree well with the data given in Stollery & Smith (1962). 
Air is here assumed to behave as a hypothetical, pure, diatomic gas with a 

characteristic vibrational temperature of 3076 OK. This assumption permits 
the use of a single rate equation in the nozzle flow analysis, but its validity is 
questionable because the chief constituents of air have markedly different 
vibrational relaxation times. However, the few experimental data of Gaydon 
& Hurle (1962) show only one relaxation time and provide the basis for equation 
(7) .  

The form of the rate equation used in this paper also requires some justification. 
The linear form is usually assumed to hold only for small departures from 
equilibrium (see for example the chapter by Herzfeld 1955). In a more recent 
paper (Wild 1963), an alternative view is expressed. In  the nozzle flows examined 
here, the departures from equilibrium are large. The linear form of the rate 
equation is used because it is simple and because no generally accepted improve- 
ment is available. 

Reduction of equations 

By use of the Mach number Mu, based on the frozen sound speed uF, equations ( 1 )  
to (5) may be reduced to the form 

g = - (d+w/(yuRTu) = - (5- a)/(y,RT,L), 
ill: = 2(h0 - Cpn T, - v)/u$ 

4 = (aP/aP),,, = YURT,. 

A-ldA/dx = (y, - 1) g. 

(10) 

(11)  

(12) 

When Mu = 1,  (8) and (9) both give 

(13) 

Since g is positive the station at which Mu = 1 must be downstream of the throat, 
and so at  the throat Mu is subsonic. With the frozen sound speed as the charac- 
teristic parameter, the problem is analogous to that of one-dimensional perfect 
gas flow with heat addition. If the nozzle shape can be expressed in the form 
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A/A* = f(x/xo), where the superscript * refers to the throat condition and x, is a 
characteristic length, then equations (8) and (9) may be non-dimensionalized 
using the variables 

p' = pipo, T' = TIT,, [ = x/x,, L' = L/x,, (TI = V/U, 

to demonstrate that px, is a similarity parameter for the transformed equations. 

The computer problem 

The computer is programmed to solve equations (8) to (12) for p and T, 
given A(x),  p, and To. In these calculations an axisymmetric hyperbolic geometry 
was used, so that A/A* = 1 + ( x  tan 8/r*)2,  

where r* is the throat radius and 0 is the semi-angle of the asymptote cone. 
The similarity parameter for this shape is p,r*/tan 0. Upstream of the throat, 
0 was taken as 45". Two downstream values were used, namely 0 = 5" and 
0 = 15". The mass flow m is unknown initially, and a solution in the convergent 
section of the nozzle is only possible by choosing a range of values of i iz and 
finding the one which satisfies the boundary conditions. These are (i) that the 
flow is in equilibrium a t  nozzle entry, and (ii) that equation (13) must be satisfied 
when Ma = 1. Finding the correct value of m takes a long time even with the use 
of a computer. Once it has been found, the solution for the divergent section of 
the nozzle is straightforward apart from the need to jump through the critical 
station, Ma = 1. 

3. Method of calculation 
Frozen flow 

For frozen flow, r = and d u / d x  = 0 so that g, as given by equation (lo),  
is zero. The solution of the nozzle flow is then identical to that for an isentropic 
adiabatic perfect gas flow having a reservoir temperature Ta,. 

Equilibrium flow 
When the flow is in equilibrium, r = 0 and T, = q. The rate equation is replaced 
by (T = 3(T,) and equation ( 8 )  is transformed to 

with M i  = 2(h, - Cp, T, - ??)/y, RT,. The flow is no longer dependent on the size 
of the nozzle or on the reservoir pressure, por*/tanO is no longer a similarity 
parameter, and equation (15) may be solved to give T,/Tao as a function of nozzle 
area ratio. At the throat (15) becomes 

and, since dF/dT, = f(T,) from equation (6), it may be solved for T,* if h,, is given. 
The value of TZ is fed into (15) as the initial value and numerical calculation can 
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proceed for both increasing and decreasing values of T,, that is for both the diver- 
gent and convergent sections of the nozzle, Table 1 (a )  shows a sample equilibrium 
calculation in which air at  reservoir conditions p ,  = 4000 p.s.i.a. and To = 2000 "I( 
is expanded through a hypersonic nozzle. The solution is compared with the 
frozen-flow result and with the equilibrium-flow values of both Erickson & 
Creekmore (1960) and the Ames research staff (1953). In figures 1 and 2,  
five equilibrium-flow solutions are given for the reservoir temperature range 
1000 < To < 3000 OK, with the intention of supplementing the real gas solutions 
given by the Ames staff. 

Frozen flow 
Equilibrium flow 
Non-eq. flow - 

Eq. solution of 
computer solution 

Erickson 8: Creek- 
more 

Ames Research 
Staff 

Eq. solution of 

A/A* 
4.24 

10.7 
25.0 
53.2 

104 
190 
327 
536 

(a) Nozzle ex i t  condifions (A/A* = 536) 
p x  106 
(slug/ 

M a  p(p.s.i.a.) T, ( O K )  Td("K) ft.9 
10.00 0.094 95.4 3000 4.59 
9.40 0.110 120 130 4.25 
9.70 0.106 104 1270 4.73 

9.58 0.106 119 119 4.13 

9.37 0.111 120 120 4.27 

( b )  Conditions along the nozzle 

Equilibrium flow 
7. 

P Ta 
Ma (p.s.i.a.) ( O K )  

2.80 123 863 
3.71 30.5 595 
4.65 8.77 421 
5.60 2.93 308 
6.55 1.10 228 
7.51 0.47 182 
8.45 0.22 147 
9.40 0.11 130 

Non-eq. flow 
7- 

P Ta 
11.1, (p.s.i.a.) (OK) 

2.87 124 811 
3.85 29.8 543 
4.83 8.57 381 
5.80 2.86 278 
6-78 1.09 211 
7.76 0.46 169 
8.72 0.21 133 
9.70 0.106 104 

w (ft./sec) 
6420 
6870 
6440 

6870 

6880 

Frozen flow 
-7 

11.1, (p.s.i.a.) (OK) 

3 109 714 
4 26.4 476 
5 7.56 333 
6 2.54 244 
7 0-97 185 
8 0.41 145 
9 0.19 116 

10 0.094 95.4 

P Ta 

TABLE 1. A comparison of equilibrium, non-equilibrium and frozen flow conditions 
forhyperbolicnozzlo; 28 = lo", r* = 0.125 in., To = 2000 OK,p, = 4000 p.s.i.a. 

Non-equilibrium jlozu 

When T is finite, equations (12) to (15) must be solved numerically, first for the 
subsonic section of the nozzle. Two methods of solution are possible. The mass 
flow rate m may be.chosen, and downstream numerical integration (from the 
equilibrium reservoir conditions) permitted until Ma = 1, when equation (17) 
must be satisfied. Alternatively, the station at which Ma = 1 and the corre- 
sponding value of g are chosen, and the equations integrated for the region 
upstream as far as the reservoir station (A/A* = loo), where the computed 
values must match the given reservoir conditions. In both cases a great deal of 
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time is saved by using the simple method described in the earlier paper (Stollery 
& Smith 1962) to obtain a first approximation for TZ. I n  this work the second 
method was adopted and matching effected a t  the reservoir station. 

The solution for the supersonic portion of the nozzle with m now known is 
straightforward. Table 1 (b )  shows the result of a sample calculationand compares 
it with the equilibrium solutions already described. Figures 3 to 6 portray 
twelve solutions computed by the present method. 

4. Discussion 
The reasons for calculating equilibrium-flow values assuming vibration to 

be the only real-gas effect were, first, that we wished to examine the effects of 
vibration alone and, secondly, that there was no agreement between the three 
existing nozzle flow solutions consulted when writing this note. The calculations 
of Erickson & Creekmore, unlike the other two references, were made using 
compressibility factors substantially different from unity. Our calculations 
ignore compressibility. The matching differences are shown in table 1 (a). Some 
recent tables (Evered, Metcalf & McIntyre 1961) suggest that the compressibility 
effect is negligible for pressures below 5000 p.s.i. Figures 1 and 2 make a further 
comparison between our results and the three others. A result obtained by 
Bernstein (1961) for nitrogen is also included and shows that the differences 
between the frozen and equilibrium properties for nitrogen are rather greater 
than those for air. Figures 1 and 2 demonstrate that the ratios pE/pIi’ and 
TE/TF a t  exit from any high supersonic, or hypersonic nozzle (A/A* 2 lo), 
are close to 1 for reservoir temperature below 1000 O K ,  and rise to around 1.30 
for To = 3O0O0K. 

Figures 3 to 6 show the non-equilibrium distribution of static pressure and 
translational temperature through thenozzle forvariousvaluesofp,x, = pr*/tan 0 
and two reservoir temperatures. For a reservoir temperature of 1000 O K ,  

figure 3 shows that a t  low values of poxo (i.e. low reservoir pressure, a small nozzle 
and large divergence angle) the flow is close to being completely frozen. As 
poxo is increased, the flow freezes a little further downstream towards the 
throat (in all the cases considered with To = 1000°K freezing occurred before 
the throat was reached), and more of the energy stored in vibration reaches the 
translational modes. At the highest levels of pox, considered (po = 4000p.s.i.a., 
r* = Q in., 0 = 5’), an interesting point emerges: the non-equilibrium static pres- 
sure level exceeds the equilibrium value. Thus the greatest discrepancy between 
perfect and real-gas nozzle pressure distributions is not limited to the difference 
between the frozen and equilibrium solutions. The heat-addition analogy suggests 
that the heat added q is proportional to i3, - c in non-equilibrium flow and 3, - i3 
in equilibrium flow. Since v > 5 there is ‘less heat addition’ when the flow is out 
of equilibrium. The addition of heat a t  subsonic velocities reduces pressure so 
we might expect to findp, < p i n  the convergent part of the nozzle. At supersonic 
speeds heat addition increases the static pressure, and whether the equilibrium 
solution ‘ overtakes ’ the non-equilibrium one depends on where freezing occurs 
in the nozzle. The subsonic branch of the equilibrium solution for the static 
pressure ratio is shown in figures 3 and 4, and it does fall below one (i.e. p E  < pF 
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as one might again predict from the heat-transfer analogy since in completely 
frozen flow q = 0). 

The earlier work of Stollery & Smith (1962) presented a quick and simple 
method of calculating the distribution of vibrational temperature throughout a 
nozzIe but did not give explicitly a 'sudden freezing' criterion. In a more recent 

PE/PF,= 1.560 0 To = 3333 "K 

To = 

To = 

T, = 

To= 

1 iu 1 02 lo3 

A/A* 

1936 "K 

2350 "K 

1950 "K 

: 1550 "K 

FIGURE 1. Variation of pressure in equilibrium flow. 

T,lT,=2.004 0 To= 3333 "K 

A Erickson & Creekmore (196 

A/A* 

FIGURE 2. Variation of temperature in equilibrium flow. 
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1 I poxo = 467 lb./in. 1 
-8- 102 103 --- lo---- 1 

A/A* 

FIGURE 3. Variation of pressure in non-equilibrium flow, exact solution, 
To = 1000°K. 

1-24 

1.20 

1.16 

1.12 e 
% 

1.08 

1.04 

3 1.00 

A/A* 

FIGURE 4. Variation of pressure in non-equilibrium flow, exact solution, 
To = 2000 O K .  
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/ poxo = 467 Ib./in. 

1-26 

1.22 

1.18 

4 1-14 
5. 
h 

1.10 

1.06 

1 *02 
1 10 100 1000 

A/A* 

FIGURE 6. Variation of temperature in non-equilibrium flow, exact solution, 
To = 2000 OK. 
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paper Blythe (1963) considers one-dimensional nozzle flows in which the vibra- 
tional energy is small. He integrates the linear form of the rate equation, which 
may be written non-dimensionally as 

and shows that a criterion indicative of rapid transition from the equilibrium 
solution is a-ld??/dC = L-lf(x),  where f(x) = pa,/p0U. 

This is of the same form as the criterion derived by Bray (1959) from qualitative 

do‘/d[ = (3’ - a’)/L’, (17)  

(18) 
- 

2000 

X 

)4 

Blythe also considers the particular example of a hypersonic gas stream, 
initially in equilibrium, expanding through a divergent conical nozzle and 
obtains an analytic expression for a(x ) .  In the convergent-divergent nozzle 
flows examined here freezing is never delayed until hypersonic velocities are 
reached so that no comparison is possible. 

A simpler criterion than (IS), one involving much less calculation, is now 
given. For the nozzle flows considered here, a typical variation of L‘([) shows 
the relaxation length increasing so rapidly along the nozzle that there is a point 
g1 beyond which d d / d g  is sensibly zero (from equation (17)). Therefore, beyond 
gl, we have a LY const., i.e. the flow is frozen. There exists then the possibility 
of fixing the freezing point (FP)  by selecting an approximate value of the relaxa- 
tion length, L& (see figures 8 and 9). A plot was made of the relaxation lengths 
a t  the freezing points versus the parameter por*/tanB from the computer 
solutions obtained both here and at the National Research Council in Canada 
by Campbell & Meyer (to be published). (The freezing point is defined as the 
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position in the perfect gas solution where the temperature equals the frozen 
vibrational temperature of the non-equilibrium solution, i.e. TF = TiF. The 
values of v and p used in calculating L' were the perfect gas ones.) The plot 
showed that despite the non-similarity in nozzle shape (@-subsonic was not 
proportional to @-supersonic), all the values of LhPfell in the range 0.2 < L' < 0.6. 

E 
FIGURE 8. Variation of 1/L' (not to scale). 

FIGURE 9. Variation of 16: (not to scale). 

Figure 7 shows that the error incurred by assuming LhP = 0.25 when calculating 
TFp is less than 5 yo for the cases considered. The figure also includes for compari- 
son the values of qF calculated previously (Stollery & Smith 1962), and it may 
be seen that the agreement with the computer solutions is quite good. 

5. Conclusions 
There are significant differences between the various equilibrium air flow 

results already published. The values presented here agree most closely with 
those given by the Ames Research Staff (1953). 

The non-equilibrium real gas effects on static pressure can exceed the equili- 
brium real gas effects. This result seems to be connected with freezing occurring 
upstream of the throat. 
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For all the twelve non-equilibrium cases considered, freezing took place 
close to the nozzle throat. The Mach numbers at the freezing point ranged from 
0.48 to  1.70. 

Vibrational real gas effects are significant, particularly in the range 

3000 > To 2 2000°K. 

The simple sudden freezing criterion L' = 0.25 is adequate for the cases 
considered. 
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